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Measurements of higher-order spectra of turbulent velocity fluctuations in the 
atmospheric boundary layer over the open ocean and land produce the inter- 
esting result that, in the wavenumber range designated originally by Kolmogorov 
as an inertial subrange, the functional dependence of the spectra on wavenumber 
is practically independent of the order of the spectrum. These results confirm the 
observation of Dutton & Deaven that their extension by a dimensional similarity 
argument of the original Kolmogorov theory to higher-order spectra was not 
valid. In  the present work, we derive an alternative generalization of the 
Kolmogorov ideas for spectra of arbitrary order. The results of this generalization 
describe the dependence upon wavenumber of the available data quite well. We 
also present theoretical calculations based on a Gaussian model for the fluctuating 
velocity field which furnish quantitative predictions for spectra of arbitrary 
order that are also in good agreement with the measurements, both in 
functional form and in absolute value. 

Comparison of results based on the Gaussian model with laboratory measure- 
ments obtained in a free shear layer shows that the Gaussian theory predicts 
accurately all the available normalized higher-order spectra for all frequencies. 
When the corresponding measured higher-order moments are close to  those 
expected for a Gaussian process, the Gaussian theory also correctly predicts the 
absolute magnitudes of the higher-order spectra. 

1. Introduction 
Interest in measurements of higher-order statistical functions of turbulent 

velocity fluctuations in fluid turbulence is partially based on the hope that their 
determination will provide crucial tests of theories which differ little for lower- 
order quantities, but which provide wildly conflicting results for higher-order 
functions. The simplest and most extensive theoretical predictions available are 
for turbulence in flows with very large values of the Reynolds number. The 
largest Reynolds numbers achieved in experiments have been obtained in flows 
of geophysical interest in the atmosphere and oceans. 

A great number of measurements of energy spectra (the lowest-order spectral 
statistic) have been made, but only recently has interest arisen in higher-order 
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spectra, of squares and higher powers of fluctuating turbulent variables. There 
has been considerable interest in such spectra in statistical communication 
problems for some time, however. 

The term 'higher-order spectra' has been previously used in several different 
ways in the turbulence literature. In  the present work it has the same meaning as 
in the atmospheric work of Dutton & Deaven (1972) and in the laboratory study 
of Champagne, Pa0 & Wygnanski (1976). Here the nth-order spectrum is defined 
as the power spectrum of the nth power of the fluctuating velocity. This definition 
differs from another one in common use, namely that the order of the spectrum 
denotes the number of frequency or wavenumber variables of which the spectrum 
is a function, and also the dimension of the corresponding displacement vector in 
its Fourier transform, the (n + 1)th-order correlation. General characteristics of 
such polyspectra have been described in detail by Brillinger & Rosenblatt (1 967). 
These include bispectra, which are functions of two frequency variables, tri- 
spectra, which are functions of three frequency variables, etc. In  the present 
work, we are not concerned with this latter type of higher-order spectrum, and 
shall be dealing only with power spectra of powers of the fluctuating velocity. 

Dutton & Deaven (1972) considered the behaviour of spectra of algebraic 
powers of the velocity fluctuations of up to fourth order. Dehing $,(k) to be 
such that $,(k) dk is the spectral contribution to (u") from the wavenumber 
interval k to k + dk we have 

((urn- (U"))Z) = (u2")- (u")2 EZ Sm $,(k)dk. (1) 
-m 

In  analogy with Kolmogorov's (1941) development of the second-order structure 
function and corresponding spectrum Dutton & Deaven argued that for large 
Reynolds numbers an inertial subrange of wavenumbers might exist in which all 
$,(it) depend only upon the wavenumber k and the mean rate E of dissipation of 
turbulent kinetic energy per unit mass. 

Assuming, in analogy with Kolmogorov's original inertial-subrange analysis 
(which results in $,(k) = a&k+), that &(k) = dimensional analysis yields 
y = @, h = -+(2n+3) and 

N k-5, N k+, $ 3 N  k-3, $4 N k+, etc. (2) 

Dutton & Deaven computed higher-order spectra of up to fourth order (n = 4) 
for all three velocity components from samples of atmospheric turbulence 
obtained at  four different altitudes with instrumented aircraft. The lower-altitude 
data (250 and 750ft), obtained over the Kansas plains, were considered as ex- 
amples of boundary-layer turbulence, while the higher-altitude data (60 000 and 
30 000 ft) were characteristic of clear-air turbulence (CAT) over the Sierra Nevada 
and severe CAT near Grand Junction, Colorado, respectively. The behaviour for 
n 2 2 described by (2) was not observed in any of these cases. As shown in the 
example of their data replotted in figure 5,  rather than increasing in slope with 
increasing order for the higher frequency range, the higher-order spectra either 
retained an approximately -%-power law or decreased somewhat in slope. This 
behaviour led Dutton & Deaven to conjecture that "it is clear that the -+power 
law generally observed in atmospheric turbulence in the range 100 to l000m 
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does not indicate an inertial range in which spectral properties [of higher-order 
spectra] depend only on ( E )  and k”. This conjecture served as the basic stimulus 
for the present investigation. If the analysis leading to (2) were correct, it  would 
appear to weaken the foundations of Kolmogorov’s inertial-subrange theory 
sufficiently to require a complete reassessment of the underlying concepts of an 
energy cascade as first proposed by Richardson (1 920). 

In  the present paper, we propose an alternative extension of Kolmogorov’s 
ideas, which describes the available data quite well. The key factor in the present 
dimensional argument is an order-dependent dissipation term en, which appears 
in the dynamical equation for (uan). 

As noted by Dutton & Deaven, the probability density of the velocity fluctua- 
tions in atmospheric turbulence is generally not even approximately Gaussian. 
In  clear-air turbulence, there are clearly more large gusts and more nearly zero 
values than would be expected if the density were Gaussian. The lower-altitude 
boundary-layer data appear to fit a Gaussian distribution much more closely. 
One knows that the distribution cannot, in principle, be exactly Gaussian. If it 
were, the probability densities of velocity derivatives would also necessarily be 
Gaussian, in direct conflict with an extensive body of experimental and theo- 
retical evidence. The grid-turbulence measurements of Townsend (1947) furnish 
an example of a velocity field for which the one-point densityp(u) is very nearly 
Gaussian, but for which the density p(au/at) of its derivative is clearly non- 
Gaussian. Later work by Prenkiel & Klebanoff (1967) and by Van Atta & Chen 
(1968) showed that for grid turbulence a Gaussian distribution could be used to 
predict even-order single- and multi-point moments of the velocity field to very 
high order with only a small error. The Gaussian assumption is thus a good 
approximation for the calculation of certain statistical properties of the velocity 
field, like even-order moments of the velocity, while it is not a good approxima- 
tion for other properties, like velocity derivatives. It is of course also of no use 
whatever for multi-point odd-order moments (e.g. triple correlations), which are 
all identically zero for a multivariate Gaussian distribution. 

Champagne et a,?. (1976) used measurements of higher-order spectra (n < 4) in 
a turbulent mixing layer to determine the contributions of various frequencies to 
higher moments of the velocity fluctuations. There was relatively little evidence 
of inertial-subrange behaviour in their spectra, but they noted that, in the 
approximately k 4  region of their first-order energy spectrum, the higher-order 
spectra did not follow the behaviour predicted by (2), but became somewhat less 
steep with increasing order. 

The question naturally arises as t o  whether the Gaussian assumption for the 
probability density of the velocity fluctuations leads to realistic predictions for 
higher-order spectra of the velocity, and how these would compare with 
measured spectra and those predicted from the extended Kolmogorov arguments. 
In  the present work we shall see that in the inertial subrange the Gaussian 
assumption produces results for higher-order spectra that are in excellent 
agreement with the experiments of Dutton & Deaven and with some new 
spectral measurements obtained in the atmospheric boundary layer over the 
open ocean. Comparison with some lower Reynolds number laboratory data of 
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Champagne et al. (1976) shows that the results of the Gaussian calculations are 
in close absolute agreement with the measured results when the measured higher- 
order moments are close to the values expected for a Gaussian distribution. 

2. Theory 
In  this section, we present two distinct theoretical attempts to determine the 

form of higher-order spectra in the inertial subrange. The first is a dimensional 
argument which can predict only the functional variation with wavenumber or 
frequency of higher-order spectra. The second analysis, based on an assumption 
of Gaussianity, predicts the same wavenumber variation, but has the distinct 
advantage of yielding quantitative predictions for the spectral levels. 

2.1. The maintenance of ($12 )  and implications for higher-order spectra 
The conservation equations which identify the mechanisms which maintain 
higher moments in turbulence follow directly from the Navier-Stokes equation. 
We shall show that these moment equations also suggest which parameters 
govern the inertial-range behaviour of higher-order spectra. 

a(t($)lat = 2n(utn-l au U P ) ,  (3) 
We start from 

where u = (u, w, w) is the turbulent velocity vector. A n  equation for the right side 
of (3) can be derived from the aua/at equation: 

u u ,  t + Uu, juj + Ua, j q + uu, juj - ( a ,  j uj) = - ~ , u  + vuu , j j *  (4) 

Here U is the mean velocity vector, p the fluctuating kinematic pressure and 
Y the kinematic viscosity. A subscript comma denotes differentiation and 
repeated non-Greek indices are summed. Multiplying (4) by 2 % ~ : ~ ~ ~  and 
averaging gives 

a(utn)/at = - 2nUu, j(ujUp-l) - %.<(u:~) ,j) - ((utnuj), j )  
shear production advection turbulent transport 

+ 2n{uEn-l) ( ( u , ~ ~ )  ,i) - 2n(uZnlt-lp ?,> + ~ ~ V ( U ~ ~ - ~ U ~ , ~ ~ ) .  (5) 

Equation (5) shows that (uin) is maintained by a variety of terms. Their 
relative importance can be determined from scaling arguments of the type used, 
for example, in Tennekes & Lumley (1972, p. 63) and by considering the form 
of the (uF) equation in special cases. Taking the scaling arguments first, we note 
that the time rate of change term is a t  most of order 

turbulent production pressure interaction viscous effwtfi 

a p q2n+l 
-(@) N - N - 
at 1 , 

where (I and 1 are velocity and length scales of the energy-containing eddies. The 
first four terms on the right side can also be shown to be at most of this order. 

To evaluate the viscous term we start by noting that molecular diffusion of 
(uz") is negligible in large Reynolds number turbulence: 
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where R2 = qZ/v is a turbulence Reynolds number. We exploit this result by 
writing 

and manipulating this to get 

( U ; ~ - ~ U ~ , ~ ~ )  = - (2n- 1)n-z (UE,~UE,~). 

~ ~ V ( U ~ " ~ ~ U , , ~ ~ )  = - 2v(2n- l ) n - - 1 ( ~ E , ~ u ~ , ~ ) ,  

( 9) 

(10) 

which shows that it is always negative and hence represents viscous destruction. 

(11) 

We have dropped the subscript a since the arguments for this term will hold for 
any component. The higher-order spectral results show that the dominant 
Fourier modes of un-lun-l lie in the energy-containing (small wavenumber) 
range, and earlier work (e.g. Wyngaard & Pao 1972) shows that those of u,ju,j lie 
in the large wavenumber range. It is believed (see, for example, Tennekes & 
Lumley 1972) that these two ranges approach statistical independence as the 
turbulence Reynolds number (and hence their separation) increases. We write, 

Using (9), the viscous term in the (,in) budget (5) becomes 

To determine the magnitude of the viscous destruction, we note that 

(u,? u,?) = n2(un-1un-1u ,j uSj).  

where h = (vZ/q)* is the Taylor microscale. Our estimate for viscous destruction 
then is, from (lo)-( 12), 

v(u:,ju;,j) - vqanp2.- q2n+1py (13) 

which indicates that viscous destruction is of the order of the largest terms in 
the budget. 

The dominant role of viscosity can also be inferred directly in special cases. 
For example, in a boundary layer over a flat surface and for cc. = 2 (the lateral 
direction), the shear production, advection and turbulent production terms in (5) 
all vanish. Turbulent transport only moves (uin) around in space, since it 
integrates to zero over the whole flow. In this flow, then, the pressure and viscous 
terms are the dominant source and sink, respectively, for (van}. 

The dominant role of viscous destruction has direct implications for higher- 
order spectra. If we use a Fourier-Stieltjes representation for the nth moment, 

~ n -  (u") = JeitxdZn(k), (dZ,(k)dZ:(k)) = &(k)dk, (14) 

then it follows that 

(15) I ((un- (un)la) = J $n(k) dk, 
((un- (un)),,) ((un- (un)),j) = Jk2#n(k)dk. 

(W- (un)>,j(un- (U")),j) = (uTju3- (UT;.) ( u 3 .  

U'e can also write 

(16) 

The second term on the right side of (16) is smaller than the first by a factor 
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A2112 N R i l  and can be neglected. It follows that the viscous destruction rate of 
( ~ 2 % )  (call it egn) is 

%n = 2(2n-1) v/k2q5,(k)dk.  (17) 

We said earlier that the dominant contributions to eZn come from the largest 
wavenumbers. If there is an inertial range where 9, N k-", it follows that m < 2. 

The budget for the odd moment (uZn+l) is derived in the same way. It reads 

a ( ~ ~ ~ + ' ) / a t  = -(2n+ 1) U , , j ( u i u ~ n ) -  U ; : ( ( U : ~ + ~ ) , ~ ) -  ( ( U : ~ + ~ U ~ ) , ~ )  
shear production advection turbulent transport 

+ (2n + 1) (u?) ( (uayj)  ,j) - (2% + 1 )  (U?P a> 
turbulent production pressure. interaction 

- (2n+ i)v((u?),jUa,j>* (18) 
viscous eftects 

The dominant terms here are of order qan+2/Z. If the correlation between uEn and 
ua extends throughout the k range, then the viscous term is of the same order: 

Note that the viscous term can be expressed in terms of the higher-order 
cospectrum: 

( 2 n + l ) v ( ( ~ 3 , ~ u , , ~ )  = (an+l)vSk2Co(~~~,u , )dk  = e2n+l. (20) 

Viscous destruction will be confined to the high-k range, and hence will be signifi- 
cant if the cospectrum falls slower than k2 in the inertial range. 

The picture we have roughly sketched suggests that the familiar ideas about 
the maintenance of velocity variance in large R, turbulence, and the roles the 
various scales of motion play, can be generalized to higher moments. Production 
occurs mainly in the energy-containing (low k )  range, with viscous destruction 
confined to large k.  If R, is so large that these ranges are sufficiently separated, 
we expect an intermediate, inertial range where only transfer from smaller to  
larger k occurs. 

Direct application of the Kolmogorov arguments to these higher-order spectra 

(21) 
gives 

These are clearly incorrect: the slopes are too steep compared with experimental 
values and the cospectrum does not change sign under co-ordinate reflexion as 
it must. 

A natural extension of the Kolmogorov ideas, and one which recognizes the 
importance of viscous destruction for higher moments, is 

I c0(u2", U )  = f(e, k )  = &n+l)k-(++On), 
9, = g(e, k )  = &nk-@n+l). 

Co(uzn, U )  =f(e, EZn+l, k ) ,  9 n  = g(e, ezn, k ) .  (22) 

If q5n and C, depend in the same way on their arguments, the simplest forms with 
the required property under co-ordinate reflexion are 

Co(u2n, u) 2: e2n+le-Sk-Q, 9, N e,,s-fk*. (23) 
This predicts that the coherence between uZn and u in the inertial range is inde- 
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pendent of the wavenumber. It is also interesting to note the similarity between 
the higher-order predictions of (23) and that of Corrsin (1951) for the inertial- 
range spectral level of a passive scalar 0:  

q.& - N d k - S ,  (24) 

where N is the rate of destruction of scalar variance. 

2.2. Higher-order inertial-subrange spectra $or a Gaussian variable 
The dimensional arguments given in 3 2.1 can predict only the functional depend- 
ence of the higher-order spectra on the wavenumber, and not their magnitudes. 
In  this section, an alternative analysis, based on the assumption of Gauasianity, 
yields predictions for all spectral levels, and gives the same dependence upon 
wavenumber, which is invariant for all higher-order spectra. 

For convenience of comparison with the raw experimental data, the following 
theoretical development is carried out in terms of spectra that are a function of 
the fiequencyf (measured in Hz), rather than in terms of a spatial wavenumber k. 
Since the measured velocity fluctuations are assumed to be stationary random 
functions of the time t ,  comparisons with the predictions of the Gaussian theory 
can be made without recourse to an assumed relation betweenf and k. However, 
when the analytical results are compared with predictions like ( 2 )  and (23), it is 
to be understood that Taylor's hypothesis (see Hinze 1959, p. 40) in the form 
I% =flu has been invoked, where U is the mean flow velocity. 

If a stationary random function of time u(t) is normally distributed, then the 
higher-order spectra q5n of un(t) defined by (1) can all be computed in principle 
from a knowledge of only the fist-order spectrum or its corresponding correla- 
tion function R(7). This result follows from the fact that, for a Gaussian process, 
the joint statistics of the bivariate distribution for u(t) and u(t+T) are com- 
pletely determined by the correlation function R(T) = (u( t )  u(t +7)). Given the 
two-sided power spectrum q51(f) of u(t),-we wish to find the power spectrum q5,( f) 
of urn($). The power spectrum $,(f) will be equal to the inveise Fourier transform 
of the correlation function (un(t)un(t + T ) ) :  

$,(f) = Sm (un(t) un(t +7))e-i2nf7d7. 
-a 

For odd powers of u(t), we have (see, for example, Rice 1973) 

where 

n [(2n + 1)! ]2Rak+l (gR(o) )212-2k  

k = O  (2k+1)![(n-k)!I2 ' ( ~ ~ " + ~ ( t )  U2"+l(t+T)) = x 

is the variance. For even n, say n = 2m, a similar calculation yields 

[ (2m) !]a R 2 m - y  gR( O ) ) 2 k  

k-0  (k!)2(2m--Zk)! * 
(U2"(t) UZm(t  + T ) )  = x 
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A [(2n+ 1)!]23(~)2k+1(@(0))2n-2k 
(2k + 1) ! [ (n - k) !I2 x 

-ca k=O 

(odd powers of u(t)), (26) 

The manipulation of these relations that follows makes use of the convolution 
relation for the Fourier transform of powers of the correlation function: 

OD 

R m ( 7 )  e-i2nf7 a7 = S - / f ~ * . *  S _ ~ m d f m - l ~ ~ ( f ~ )  * a *  +l(trn-1)+1(t-f1 . - . f rn- I )  

= (m - 1)-fold convolution of &(f). (28) 
S_mm 

In the general case, evaluation of the higher-order spectra of a Gaussian 
variable requires either analytical or numerical evaluation of the integrals in 
(26) and (27), or evaluation of the convolution integrals in (28). These operations 
require that the entire spectrum or correlation function be specified. However, 
for the present atmospheric data, we are mainly interested in the behaviour of 
the spectra in the inertial subrange. As observed by Kaimal et al. (1972), first- 
order spectra obtained from different experiments and under different conditions 
show a wide systematic variation for low frequencies, depending on the degree of 
stability and other external parameters, but their forms and magnitudes in the 
inertial subrange follow a universal scaling. A n  asymptotic analysis for large 
frequencies, applying only to the inertial subrange, appears desirable. 

To carry out the analysis, one needs a spectral form which reduces to the 
Kolmogorov spectrum for large frequencies or wavenumbers. A suitable form, 
due to von Khrmtin and discussed by Hinze (1959, p. 199), is 

+Jf) = bhQ/[l+ ( A f ) 2 ] 9 .  (29) 

It seems likely that other model spectra which have a k 4  behaviour in the 
inertial subrange would also be suitable for the present purpose. The von KBrmtin 
spectrum has the advantage of possessing a simple and convenient correlation 
function (see appendix), which makes it fairly easy to carry out an asymptotic 
analysis for largef. From (29), the mean square of the velocity fluctuations is 

( ~ 2 )  = R(O) = bM[r(i) r(&)/r(+)] = 4.20bh3. (30) 

The higher-order spectra for odd powers of u(t) are then given by 

m 4.20bhf 2rn--2k (2kth convolution of $1) 
$ Z r n + l ( f )  = C(2m+1)!I2 k=O c (7) (2k+1)![(m-k)!]2 * 

For large values off, keeping only the leading term in the 2kth convolution of $1 
gives (see appendix) 

2kth convolution of q51(f) N b(bh%)2k(4-20)2k(2k + 1)f-5 
+ (higher-order terms in f). 
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So for large f, the dependence onf will be the same (q5n N f4) for higher-order 
spectra of all orders. We then have for large f 

The summation term can be written as 

Finally, for the power spectra of odd powers of u(t) we have 

#2m+ldf) N b(4 .20bA*)2m(2m+l )2 [1x3x5x  ... x(4m-1)lf-Q 

(m = 1 ,2 ,  ...). (31)  

A similar analysis for even powers of u(t) produces the result 

$2rn( f )  - (d.c. spike) +b(4-2bh*)2m-1 

x (2m)' [1 x 3 X 5 x . . . x ( 2 m  - 1) ( 2 m  + 1) x . . . x ( 4 m  - 3) l f -S .  (32 )  

Equations (31 )  and (32 )  may be combined to obtain a single expression valid for 
arbitrary powers (both even and odd) of u: 

& ( f )  - (d.c. spike if n is even) 
+b(4*2bA*)"-1n2[1 x 3 x 5 x ... x (2%-3) ] f+ ,  (33 )  

From (29 )  and (33) ,  the non-dimensionalized ratio of the higher-order spectra 

( 3 4 )  

where the h a 1  product in brackets is replaced by 1 when n = 1. 

to the first-order spectrum is simply 

rjhn(f)/[R(O)n-lq4(f)] = n2[1 x 3 x 5 x ... x ( 2 n -  3)J .  

Note that this ratio is independent of the parameters b and h and of the dimen- 
sions used for the velocity u and other multiplicative constants in the spectra or 
frequency variable. 

3. Comparison of atmospheric experimental data with theory 
The raw computed spectra shown in figures 1 and 2 were compared with the 

dimensional theory of 92.1 and with the asymptotic theory of $2.2 .  These are 
spectra of the longitudinal component u ( t )  of the fluctuating velocity obtained 
in the atmospheric boundary layer over the open ocean at a height of 3 m above 
the mean water surface level. The data were obtained during steady trade wind 
conditions from FLIP, the stable floating instrument platform of the Scripps 
Institution of Oceanography, during the Barbados Oceanographic and Meteoro- 
logical Experiment (BOMEX), in May 1969. The mean velocity was 7 - 2  m/s. The 
fluctuating velocity was measured with a single vertically oriented hot wire 5,um 
in diameter and 1 mm long, This hot wire was operated in the constant-resistance 
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FIGURE 1. First-, second., third- and fourth-order spectra of u(t) measured in the atmo- 
spheric boundary layer over the open ocean. Dashed lines, which have a slope of -5,  
are higher-order inertial-subrange spectra predicted by asymptotic Gaussian theory. 
Dashed -$ line in plot is not a fit to data. Note large range of the magnitudes of 
the higher-order spectra. 

mode using a DISA 55D05 anemometer, and the anemometer output was linear- 
ized with a DISA 55DlO linearizer. The linearized hot-wire signal was FM tape 
recorded and later played back and sampled in the laboratory with a 12-bit 
analog-to-digital converter at a rate of 521-5 samplesls. Further details of the 
experimental conditions and apparatus, calibrations and data sampling have 
been given by Van Atta & Chen (1970) and Van Atta & Park (1972) in studies of 
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FIGURE 2. Fifth-, sixth-, seventh-, eighth- and ninth-order inertial-subrange spectra of u(t) 
measured in the atmospheric boundary layer over the open ocean. Dashed lines have 
same meaning as in figure 1. 

structure functions in the inertial subrange. The present spectra were obtained 
using fast Fourier transforms of 100 digital records, each of which contained 
2048 samples. Individual record averages of u" were used for the mean values 
(un). For atmospheric data, individual record averages of such short length will 
fluctuate considerably around the long-term average. Use of the long-term 
averages to compute the fluctuations and spectral levels in each record will 
produce errors in the measured higher-order spectra that depend on the values 
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of lower-order spectra. For example, if in a given record the local record mean 
differs from the long-term mean by uo, i.e. u(t)  = uo+G, where (G)  = 0, then 

where Ba,@ is the cross-spectrum of G and G2. The measurement of q52 is thus 
contaminated by terms that are proportional to q51 and 8. For measurements of 
&, the value of uo affects only the zero-frequency spectral value q5(0). For 
laboratory data, the record length can normally be chosen to be considerably 
longer (say by a factor of I0 or 20) than the integral time scale of the fluctuations, 
and the spectral contamination problem is negligible because of the small size of 
the residual u,. Attention was first drawn to this kind of problem by Chen (1969) 
in connexion with correlation measurements, for which reeord means are not 
appropriate. A discussion of similar questions concerning cross-spectral measure- 
ments has been given by Helland (1974). 

The data shown in figures 1 and 2 are spectral averages over I00 records. In  
these data, a dear -$-power-law range in the spectra is apparent for all spectra 
of up to sixth order, but for higher orders it is not as clearly defined, partly owing 
to an increasing oscillation in the spectra near 30 Hz. The effect of aliasing in the 
high frequency tails of the spectra also becomes more apparent as the order is 
increased. The slopes of the dashed lines ( - 9 )  are those predicted both by the 
asymptotic Gaussian theory and the present extension of Kolmogorov’s dimen- 
sional theory [equation (33)]. The dashed lines also denote the absolute spectral 
values predicted by the Gaussian theory (except in figure l a ) .  The present 
theories both represent the data fairly well. The present generalized Kolmogorov 
theory clearly provides a good representation of the data, in contrast to 
the earlier proposal for inertial-subrange behaviour by Dutton & Deaven 
[equation (2)]. The frequency below which the spectra depart from an approxi- 
mately -2 slope increases monotonically with increasing order. For high fre- 
quencies, the measured spectra are thus in qualitative agreement with the 
Gaussian asymptotic theory and with the trends observed by Dutton & Deaven. 

The asymptotic theory was compared quantitatively with the present experi- 
ments by using the measured lower-order spectra to determine the constants 
b and h and then comparing the measured higher-order spectra with their pre- 
dicted magnitudes obtained using the same vaIues of b and A. The data for the 
frequency range 10-100Hz were used in determining b and A. A fit to the data 
forq5,infigure lgivesb = 7194,correspondingtoavalueofq5, = 155atf = 10Hz. 
Using this value of b, the values of h determined from q52 and are h = 2.6 and 
3-0, respectively. The average of these two values, A = 2-8, was then used with 
b = 7194 to predict the values of the higher-order spectra using (33). 

The fits for the lower-order spectra and the predicted spectra for higher orders 
are indicated by the dashed lines in figures 1 and 2 for 2 < n < 9. In  most cases 
the predicted spectral levels indicated by the dashed lines pass directly through 
the measured spectral values, and are in fact close approximations to the 
measured spectra for each value of n. In  view of the large changes in the absolute 
spectral level with increasing n, the agreement between the asymptotic formula 
(33) and the measured spectra in the -8 range appears to be quite good. For 
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n = 8 and 9, the predicted levels are a bit high. For the largest values of n the 
spectra are also becoming progressively more ragged and the -$ range is not 
clearly defined. From the present data, one may conclude that, for the spectra of 
up to and including seventh order, the measured spectra in the inertial range are 
in good agreement with theoretical predictions for higher-order spectra of a 
Gaussian variable. 

For the present data, the extent of the -$-slope region in the spectra is less for 
all higher-order spectra than for the first-order spectrum. For comparison with 
the low-frequency ends of spectra predicted using the von KhmAn form for 
the complete higher-order spectra for n < 4 were determined numerically. Using 
the normalized correlation function [see equation (A 1) of the appendix] 

R ( ~ ) / R ( O )  = 2*(2n+)* ~ & ( 2 7 ~ 7 / 4 / r  

the expressions in (26) and (27) were numerically evaluated using a fast-Fourier- 
transform routine. These numerical results also served as a further check on the 
asymptotic theory for large f. The second-order spectrum was also evaluated 
using a direct numerical convolution, as a further check on the calculations per- 
formed via sums of Fourier transforms of powers of the correlation function. It 
did not appear practical to attempt to obtain $n for n > 2 by numerically evalu- 
ating the multiple convolutions of (28). The results of these calculations, which 
are applicable for arbitrary values of 71 and A, are shown in figure 3. The numerical 
results are in good agreement with the asymptotic theory, and show that for 
a von K k m h  spectrum the asymptotic theory is a good approximation down to 
dimensionless frequencies 3 =fh of about 10, the lower limit being a weakly 
increasing function of the order of the spectrum. This latter behaviour is con- 
sistent with that observed in the data. 

The measured probability density of the velocity fluctuations is shown in 
figure 4. Although the distribution is decidedly non-Gaussian, the deviations 
from Gaussianity are small enough so that the first few moments are of the same 
order of magnitude as those for a Gaussian distribution. For a Gaussian distribu- 
tion, and therefore also for the numerically determined spectra in figure 3, the 
values of the moments are given by (uan)/(u2)n = 1 x 3 x 5 x ... x (2%- 1). In 
view of (1), the ratios of the areas under all the higher-order spectral curves are 
therefore fixed. However, as the order increases, the moments will rapidly deviate 
from those expected for a Gaussian density. As is well known, experimental 
values of such moments are a strong function of the type of flow, stability and the 
position of measurement in the flow (e.g. the distance from the boundary in 
a boundary layer). The present good agreement between the Gaussian calcula- 
tions of 9, and experimental values in the inertial subrange indicates that the 
major contribution to non-Gaussian behaviour of the higher-order moments 
comes from the non-universal low-frequency end of the first-order and higher- 
order spectra. Higher-order moments and the corresponding low-frequency por- 
tion of the higher-order spectra have not been determined for the present atmo- 
spheric data. This would require lower sampling rates and considerably longer 
samples of data than were used for the inertial-subrange spectral calculations. 

The Dutton & Deaven data are most easily compared with the asymptotic 
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FIGUFLE 3. Numerically computed first-, second-, third- and fourth-order spectra obtained 
using Gaussian theory and normalized correlation function of von KArmBn spectrum. 
Note departure from inertial-subrange behaviour for low frequencies and decrease in 
extent of inertial-subrange (-$) behaviour as order of spectrum increases. -, 
--- , # z ; - * - , # 3 ; - - - , # ~ .  

theory using (34). In processing their data, Dutton & Deaven worked with the 
velocity normalized with its variance, i.e. u/R,(O)*, v/Rv(0)4, etc., and the spectral 
data they presented are also given in terms of the velocity components normalized 
with their variances. For this reason, the ratio of any of their spectral results to 
their first-order spectrum corresponds exactly to the definition of the dimension- 
less spectrum given in (34). We therefore can simply multiply their first-order 
spectrum by 4,27 and 60 in order to compare their experimental results with the 
asymptotic theory for q&, q53 and q54, respectively. Results of this comparison are 
illustrated in figure 5, which is areplot of the Dutton & Deaven LO-LOCAT 750 f t  
data. These data exhibited the most regular behaviour in the inertial subrange, 
and appear to be the most suitable of their data for the present comparison. The 
asymptotic theory predicts the magnitudes of the higher-order spectra quite well, 
and the agreement is as good as one could hope for, considering the relatively 
small extent of the inertial subrange covered by the data. These measured spectra 
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FIG~SRE 4. Probability densities of u(t) for present atmospheric boundary-layer data and 
mixing-layer centre-line data of Champagne et d. (a)  Atmospheric boundary layer over 
the open ocean. (b )  Two-dimensional mixing layer. -, Gaussian distribution. 

‘ r  

k k 

FIam 5. First-, second-, third- and fourth-order spectra k$,(k) obtained by Dutton & 
Deaven for the LO-LOCAT 750 ft (altitude) data. The straight lines, which have a 
slope of - 3, are higher-order inertial-subrange spectra predicted by asymptotic Gaussian 
theory using the von K h n h n  spectral form. Note that in these co-ordinates the - 3 slope 
corresponds to the - $ power law of Kolmogorov theory. -, u, longitudinal component 
of velocity; - - -, w, lateral component of velocity. 
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FIG- 6. Curve fit to plane-mixing-layer correlation-function data used for numerical 
computations of higher-order spectra shown in figure 7. - , curve fit; 0,  data of 
Champagne e.t al. 

also exhibit the trend that the inertial-subrange spectral behaviour begins at 
a higher frequency as the order of the spectrum increases. This is consistent with 
the trend in the BOMEX data and with that predicted by the calculations using 
the von Kkm&n spectral model. 

4. Comparison of Gaussian theory with some laboratory data 
Laboratory measurements on the centre-line of a plane mixing layer of spectra 

of un(t) up to fourth order have been made recently by Champagne et al. (1976). 
Their measurements were motivated by a need to determine whether the fre- 
quency response of their analog and digital measuring instruments and computa- 
tional techniques was adequate for determining the higher-order moments of a($). 
Since raising a signal to a power (e.g. squaring) produces sum and difference 
frequencies, this operation produces higher-order spectral energy at  frequencies 
considerably exceeding the usual Nyquist frequency. As discussed by Van Atta 
(1974), if the first-order spectrum does not fall sufficiently rapidly, higher-order 
spectral mass can be lost if the data are processed according to the usual Nyquist 
criterion. Champagne et el. found that in their case this wm not a serious problem, 
and that their measured spectra gave an accurate measure of the contributions 
of various frequency components to the higher-order moments. Their first-order 
spectrum exhibited a small interval of r0ughlyf-Q behaviour. They noted that in 
this frequency interval their higher-order spectra did not follow the trend pre- 
dicted by (Z), but rather the spectra became somewhat less steep (on a log-log 
plot) as the order increased. 
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Theoretical higher-order spectra for the mixing-layer data were computed 
from (26) and (27), using a three-section polynomial curve fit to the measured 
correlation function as input to the same program as was used to produce the data 
in figure 3, The curve fit shown in figure 6 was used to generate 4096 points of the 
correlation function. Some numerical experimentation with the curve fit for small 
time lags r was necessary in order to fit accurately the high-frequency end of the 
first-order spectrum, as only a few points were available for the measured cor- 
relation function for small 7. These correlation data were then raised to  the 
appropriate powers and fast Fourier transformed to generate the terms in (26) 
and (27). Since spectra up to only fourth order were computed, this procedure 
required a maximum of two Pourier transforms for each higher-order spectrum 
computed. The resulting spectra are shown in figures 7 (a)-(d). The computed 
results for q51 are in close agreement with the measured spectrum, indicating that 
the fit to the correlation function is adequate, and that the results for the higher 
orders can be trusted. As shown in figures 7 (b ) ,  (c) and (d), normalized spectra of 
second, third and fourth order computed using the Gaussian formulation all lie 
rather remarkably close to the measured values of these spectra. The agreement 
becomes somewhat poorer as the order of the spectrum increases, and also 
noticeably degrades with increasing frequency for q53 and $4. One would expect 
the discrepancies between theoretical and experimental higher-order spectra to 
increase with increasing order, as the difference between the measured moments 
and those for a Gaussian random function increases as the order increases. The 
measured values of the first few higher-order moments for the mixing-layer data 
are(u3)/(u2)>" = - 0.035, (u4)/(u2)>" = 2-6, (u5)/(u2)* = - 0.16, (u6)/(u2)>" = 10-2, 
(u7)/(u2)4 = - 0.27 and ( U ~ ) / ( U ~ ) ~  = 52, compared with corresponding Gaussian 
values of 0, 3, 0, 15, 0 and 105, respectively. The measured probability density, 
shown in figure 5, is quite symmetrical and to  a low-order approximation is fairly 
well described by the Gaussian probability density. 

In terms of an absolute-magnitude comparison like that made in $ 3  for the 
atmospheric inertial-subrange spectra, the unnormalized theoretical and 
measured values of q52 are in very good agreement, while in the low-frequency 
range, which produces the largest contributions to the moments, the theoretical 
and measured values of and qi4 are roughly in the ratios 312 and 211, respec- 
tively. This is the spectral equivalent of the difference between the directly 
measured higher-order moments and the corresponding Gaussian values. For 
these data then, the Gaussian assumption provides an accurate representation 
for third- and fourth-order spectra only in the normalized representation in 
which the total area under the spectral curves is equal to one. 

5. Discussion and conclusions 
The original Kolmogorov argument asserts that, if the energy spectrum q51 has 

a range in which it depends solely on E and the wavenumber k, then it must have 
the form $1 = a l e ~ k - ~  in that range. Dutton & Deaven proposed that, if the 
Kolmogorov argument could be extended in the sense that nth-order spectra 9, 
also had arange in which they depended only on e and k, then they must have the 

44-2 
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form given by (2). This expression is in serious conflict with the observations of 
Dutton & Deaven (n 6 4) and the present data (n < 9). Hence we conclude that 
the Dutton & Deaven extension of the Kolmogorov argument is not valid. The 
present theoretical generalization (0 2.1) of the Kolmogorov dimensional argu- 
ment is based on the dissipation terms in the dynamical equations for (u2") and 
( ~ ~ ~ + l ) .  The resulting predicted variation of the higher-order spectra with wave- 
number is consistent with the experimental results. The Gaussian theory is also 
in good qualitative and quantitative agreement with the experiments. 

The good agreement of the normalized mixing-layer spectral data with the 
Gaussian calcuIations shows that the Gaussian formulation can be used to predict 
accurately entire spectra of arbitrary order from the first-order spectrum or 
correlation function when the higher-order moments are known and the proba- 
bility density is approximately Gaussian. Good absolute spectral agreement is 
obtained when the moments are close to those for a Gaussian distribution. 
Further measurements of this kind in other flows, especially a flow like grid 
turbulence, in which the probability density is more closely Gaussian, might 
serve as an interesting test of the order to which the Gaussian theory can furnish 
valid predictions for the q5%. 
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The research was supported by National Science Foundation Grant GK- 
43643X and the Advance Research Projects Agency of the Department of 
Defense and monitored by ONR under Contract N00014-69-A-0200-6054. 

Appendix. Derivation of asymptotic form of the nth-order convolution 
of the von KArmAn spectrum 

Define C,(f) as the n-fold convolution of (1 + x2)+.  The zeroth-order convolu- 
tion is the spectrum itself, i.e. C,,(f) = (1 +f2)-%. From Watson (1944, p. 185), the 
correlation function is 

where K+ is the modified Bessel function of order Q. Then 

where x = 2nr and c = 2%d/I'(g). From Watson (1944, p. 202), for large x 

K+(z) - (n/22)4 e-z( 1 - 5/(72x) + . . .). (A 3) 

Because of (A3), the conditions for Jordan's lemma are satisfied, and we can 
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swing the path of integration up along the imaginary z axis and, letting z = iy, 
we have 

Cn(f) = - 7T Re i e-"f[(iy)~K~(iy)lnf1dy. (A 4) cn+l som 
Because of the exponential factor in the integrand, for large values off the major 
contribution to the integral comes from small values of iy, and an asymptotic 
result for large f can be obtained by expanding the integrand for small values 
of = &y. 

From the definition of K i  (e.g. Watson 1944, pp. 77, 78) 

7T 
z%&) = - [ Z + 1 4 ( Z )  d 1 * ( 2 ) ] .  

Z * K , ( Z )  = b[ l -a@+g2-&g++ ...I 
[ Z + q 4 p + 1 =  a m t i  i - a(n + 1) $3 + in(% + i)  ay+ 

36 

Keeping the first few terms in the summations for 4 and I+ and regrouping gives 

and 

x (-*(n+l)a-#n(n+l)a 

a4) +...I, (A 5 )  
( n + l ) n ( n - l ) ( n - 2 )  

4 !  
+ 

where E = giy, a = 3I'(#)/r($) and d = 2*~/31I'(#). From (A4) and (A5), 

3t 
CJf) = [2~+ /3W(s )  r(g)]"+'Z;;Jom dge-vf [a(%+ 1) (&y)+-+n(n+ 1) 

x as(&)*- (h): (ti(%+ 1) (2n+ 1) -+xa4(n+ 1) n(n- 1) (n- 2)) + ...I. 
Integrating term by term yields an asymptotic series for largef: 

c,(f) [~,r(9)ir(~)]n[(12+i)f-g-23n(n+ 1) f4 
+ +{ - (2% + 1) i- 2glgn(~ - 1) (n - 2) a31 j-+ + . . .I, 

or C,(f) N (4*20)lt[(n+ i)fa-n(n+ 1)fG/1*59+ ...I. 
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